
SANDIA REPORT

SAND2018-4185
Unlimited Release
Printed March 2018

A Minimum Variance Algorithm for
Overdetermined TOA Equations with an
Altitude Constraint

Louis A. Romero, John J. Mason

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the

U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http:llwww.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2



SAND2018-4185
Unlirnited Release
Printed March 2018

Reprinted March 2018

A Minimum Variance Algorithm for Overdetermined
TOA Equations with an Altitude Constraint

Louis A. Romero

1316 Richmond Dr NE

Albuqueruqe, NM 87016
laromero@gmail.com

John J. Mason

Radar & Signal Analysis Department

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-0519

jjmason@sandia.goy

3



Abstract

We present a direct (non-iterative) method for solving for the location of a radio frequency (RF)
emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements
and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the
navigation application are governed by the same equations, but with slightly different interpreta-
tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise
level, just as the TOA measurements are handled, with their respective noise levels. With 4 or
more TOA measurements and the assumed altitude, the problem is overdetermined and is solved
in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We
call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it
achieves the minimum possible error variance for given levels of TOA and altitude estimate noise.
The method algebraically produces four solutions, the least-squares solution, and potentially three
other low residual solutions, if they exist. In the lightly overdermined cases where multiple local
minima in the residual error surface are more likely to occur, this algebraic approach can produce
all of the minima even when an iterative approach fails to converge. Algorithm performance in
terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach
are given in tables.
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Chapter 1

Introduction

In this paper we consider the algebraic solution of overdetermined systems of time of arrival (TOA)
equations, plus an equation relating the solution and an assumed altitude. This assumed height
above the reference ellipsoid (HAE) may be obtained, for example, from digital terrain elevation
data (DTED) after making a preliminary estimate of the location of the device. The relative geolo-
cation strength of the TOAs and the assumed altitude depend on the bandwidth of the RF signals
and the quality of the altitude data available. One application where the altitude constraint is par-
ticularly helpful is that of geolocating a narrowband emitter. A fundamental concept in radar and
radio location is that TOA measurement error is inversely proportional to the root-mean-square
(RMS) bandwidth of the RF signal [8]. Therefore locating or tracking the source of a narrowband
signal, for example a speech modulated signal, results in relatively noisey TOA measurements.
In this case the variance of the HAE estimate may be much lower than the TOA error variances
(expressed in distance units), and the location solution error will be greatly reduced by using the
HAE data.

Solutions of this geolocation problem in the precisely determined case, where there are three
TOAs and an HAE have been given in [13], [7] and [10]. There have been numerous papers
discussing the solution of overdetermined systems of TOA equations [2, 11, 17, 19, 4, 3, 16, 9], but
a paper by Ho and Chan [6] is the only one we know of discussing the overdeteremined problem
when an altitude constraint is included. In that paper the altitude constraint is a hard, or exact
constraint, whereas in the present paper we weight the altitude constraint as we weight the TOA
equations, with the variances of the data errors. This weighting scheme produces the minimum
possible solution error variance given the TOA and altitude data error variances [14]. Another
difference in our approach is that [6] uses a spherical earth model, which requires an iterative
process to handle an ellipsoidal earth, but this may be combined with the iteration that the use of
DTED forces (to compute the location used to access the database). The current state of the art
for producing minimum variance solutions to this problem is Gauss-Newton iteration, which we
show will diverge occasionally in lightly overdetermined cases. We present an algorithm we call
the TOA-Altitude Quartic Minimum Variance (TAQMV) algorithm that produces the minimum
variance solutions analytically, eliminating divergence failures.

To facilitate our overview of this paper, we now give the basic governing equations. These
equations describe both the navigation application where we solve for the position of a receiver,

9



as well as the emitter tracking application where we solve for the location of a transmitter. In
the navigation application the user has knowledge of the positions of several radio frequency (RF)
transmitters. In the emitter tracking application the system uses the known position of several RF
receivers. In either application the equations governing the signal propagation are the same, and
the N system RF element positions are denoted sk, k = 1...N, while the position of the device to
be located is denoted x. In the navigation application the receiver measures the apparent range
between the receiver and each transmitter using its biased clock which produces N pseudoranges,
Tk. In the emitter tracking application the system measures the time of arrival (TOA) of the emitted
signal at each of the receivers. Here we denote the kth TOA scaled by the speed of light as Tk.
Choosing the time reference epic to make the Tk small is generally a good thing to do for numerical
stability.

Assuming the signal travels with the speed of light c, we can write

1 Ix — skl 1 = Tk — T for k = 1...N, (1.1)

where 2 = ct is the range-equivalent receiver clock bias, or alternatively the emitter transmit time.
With either interpretation Eqn. (1.1) gives us N equations in 4 unknowns, the 3-dimensional vector
x giving the devices's location, and 2, either the receiver clock bias or the emitter transmit time .
The subscripted quantities are known or measured parameters/data. We consider the pseudoranges
(or the TOAs) to be perturbed with measurement noise so that Eqn. (1.1) are generally inconsistent.
Furthermore we will assume that we can estimate the variance of the measurement noise for each
pseudorange/TOA which allows us to calculate the minimum-variance solution to Eqn. (1.1),
which we consider to be the most desirable solution of an inconsistent system.

We also have an altitude constraint of the form

xTK(h)x —I? = 0,

where K is a positive definite matrix defining an oblate ellipsoid of revolution

/  R . 
(Re+h)2

K = 0

o\

0
1? . 

(Re+h)2

0

0 \

(1.2)

(1.3)

where Re and Rp are the equatorial and polar radii of the earth respectively, and h is the HAE
[10]. In applications where the altitude data, h, can be estimated and has lower variance than
the TOA data, using the altitude constraint gives a better geolocation estimate than the TOA data
alone would give. When it can be assumed that the device is on the surface of the earth, h is the
height of the local terrain above the reference ellipsoid. Alternatively, if the device is a known
distance above the surface of the earth, the additional height of the device above the local terrain
would be included in h. In any event, h is the estimated height of the device above the reference
ellipsoid, however that estimate is obtained. Depending on the requirements of the application, h
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could be estimated using various sources of altitude data such as a DTED database or an altimeter.
We assume that an estimate of the standard deviation of the error in h can also be made, as this
quantity, ch, is used to weight the altitude equation in the weighted least squares solution.

Rather than dealing with Eqn. (1.1), which we can call the primitive TOA equations, it can be
more convenient to solve the squared TOA equations

11 1
Ilx — Skil

2 
= lt - TO

2 for k = 1,N . (1.4)

The squared equations (1.4) can be simpler to treat algebraicly than the primitive equations, Eqns.
(1.1). However, it should be noted that as with the case of the primitive equations [15], [7], [1],
it is not possible to weight the squared equations a priori to achieve minimum variance solutions
because the weights require the lengths of the RF links. In the algorithm we present in this paper,
we will choose the weightings based on a preliminary estimate of x that allows us to achieve
solutions that have the minimum possible variance. This is the approach used in [14].

The following is a brief overview of the sections in this paper. In §2 we introduce the notation
and equations that we will be solving throughout the paper. The resulting equations are called the
TOA-Altitude Full Least Squares (TAFLS) equations, and they yield minimum variance solutions.
However, they can only be solved iteratively using a method such as Gauss-Newton [17, 14].
In §3 we introduce the TOA-Altitude Reduced Least Squares (TARLS) algorithm, that does not
give a minimum-variance solution. The TARLS algorithm is the extension of Bancroft's [2] non-
minimum-variance algorithm to include a weighted altitude constraint. The TARLS solution is
used to set certain parameters in a preferred algorithm that we call the TOA-Altitude Quartic
Minimum Variance (TAQMV) algorithm. In §4 we introduce the TAQMV algorithm, and in §5
we show that when we linearize the TAQMV equations we get the same equations as when we
linearize the TAFLS equations. This shows that the closed-form TAQMV solution is minimum
variance as is the TAFLS solution (when an iterative method converges to this solution). In §6 we
tabulate simulation results for the closed-form TAQMV algorithm and for iterative techniques of
solution of the 4-TOA plus altitude-constraint geolocation problem. The data in this section shows
the TAQMV algorithm working as desired, i.e. producing MV solutions without the occasional
divergences of Gauss-Newton. In §7 we give our conclusions. In the Appendix we discuss some
of the details of using resultants [18, 10] to find the solutions of two quadratic equations in two
unknowns.
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Chapter 2

The TAFLS Equations

In this section we define the TOA-Altitude Full Least Squares (TAFLS) equations. A minimum-
variance geolocation algorithm based on these equations could be defined by iteratively solving
the equations after specifying the algorithm used to determine the starting point of the iteration
[17, 14]. In lightly overdetermined conditions the performance of this algorithm would be highly
dependent on the initialization. In Section §6 we will define and characterize two such algorithms
that are useful for comparison to our proposed preferred algorithm which is given in §4. In the
following two sections we will also make approximations to various terms in the TAFLS equations
to obtain our proposed non-iterative minimum-variance algorithm. We now derive the TAFLS
equations.

If we introduce the vector

we can write the equations (1.4) as

where

where I is the 3-by-3 identity matrix,

and

(2.1)

Sz = ge+b, (2.2)

µ = zilz = -c2 xTx,

L = 
0

( —I 0

/ —2s1 21-1 N
_24' 21-2

S=

\ —2s1\i' 21-N /

eT = (1,1,1,...,1),

(2.3)

(2.4)

(2.5)

(2.6)

bT = (bl,b2, ...bN) bk = 2k — sTsk. (2.7)
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The altitude constraint can be written as x(z) = 0, where

where

X(Z) = ZT QZ Re2

Q = 
( K 0 \

0 0 )

where K is defined in Eqn. (1.3).

Ideally we would like to satisfy the system of equations y(z) = 0 where

y(z) = Sz — /./(z)e — b,

(2.8)

(2.9)

(2.10)

along with the equation x (z) = O. When we have four or more satellites, this will give us an over-
determined system of equations that we will satisfy in the least squares sense. This motivates the
definition of the objective function

1 1 
P(z) = yT (z)Wy(z) iw (x (z))

2 
, (2.11)

where W is a weighting matrix, and w is a scalar giving the weighting of the altitude constraint.
We will see in (2.15) and (2.16) that W and w are both functions of z.

At any value of z that minimizes this objective function, we must have VP(z) = 0, which is
equivalent to requiring that to first order we have SP = SzTVP = 0 for all 6z. To first order we
have

Sy = Söz — 2e (zTL.5z) , (2.12)

and
Sx(z) = 2zTQ6z. (2.13)

It follows that we can write

SP = SzT (ST — 2LzeT) wy+ 2wx(z)6zTQz.

If we require that this vanish for all values of 3zT , this gives us what we will refer to as the TAFLS
(TOA Altitude Full Least Squares) equations.

Definition 1 (TOA Altitude Full Least Squares). The TAFLS equations are given by

FT (z)Wy(z) 2wx (z)Qz = 0, (2.14a)

where x (z) is defined as in Eqn. (2.8), y(z) as in (2.10), and

F(z) = S — 2ezTL. (2.14b)
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Eqn. (2.14) gives four equations for the four unknowns in the vector z. Since the matrix F
depends linearly on z, and the vector y has a quadratic dependence, these equations have a cubic
nonlinearity before considering there is an additional non-linearity due to the fact that the weighting
matrix depends on the solution z. It is often stated that when solving an overdetemined system
of equations in the least squares sense that the equations should be weighted by the inverse of the
data covariance matrix. This is true when the derivative of each equation with respect to the data is
unity, such as in Eqn. (1.1). In the more general case [15] however the optimal weighting matrix
is given by

W = (DID) —1 , (2.15)

where D is the matrix of partial derivatives of the equations with respect to the data. For the squared
system in Eqn. (1.4) D is the diagonal matrix with 1/ (T — Tk) on the kth diagonal, and E is the
covariance matrix of the TOAs (or pseudo-ranges), Tk. Similarly, the scalar analog of Eqn. (2.15)
gives the optimal altitude equation weight as

1
W = 

152 (zT dQz)2 .
h dh

Recalling that T is the fourth element of z we see that the optimal weightings W and w depend on
z, the solution. In the TAQMV equations we use a non-minimum variance solution to estimate z,
and set the weights using this estimate of z.

15
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Chapter 3

The TARLS Algorithm

In this section we present a technique that gives a solution to the overdetermined system of altitude
and TOA equations. This solution will not be a minimum variance solution, but it is accurate
enough that we can use it either as an initial guess to the Gauss-Newton method, or as input to
an algorithm that will be minimum variance. We will call this solution the TARLS (TOA-Altitude
Reduced Least Squares) solution.

Referring to (2.2) through (2.9) our overdetermined system of equations can be written

Sz = + b, (3.1)

zTLz (3.2)

zTQz Re2 = O. (3.3)

Similar to the Bancroft algorithm [2], we will write

z=p,a+P, (3.4)

where a and are the least squares solutions (or if TOA variances vary significantly the weighted
least squares solutions) to

Sa = e, (3.5)

and
so = b. (3.6)

If we substitute the expression (3.4) into either Eqn. (3.2) or (3.3), we get a quadratic equation for
In particular, substituting (3.4) into Eqn. (3.2) gives us the equation

p(P) = P2A2 +Pat +Po = 0,

17
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where

(132,1317130) = (alia,2aTLO — 1, 1971,6) .

Similarly, substituting the expression for z from Eqn. (3.4) into Eqn. (3.3) gives us

g(P) = 2+ + go = 0,

where

(q2,ql,q0)= (a TQa- 2aTQP-PTQP RO •

(3.8)

(3.9)

(3.10)

We now have two quadratic equations to be satisfied. In general we will not be able to satisfy
both of these equations. However, we assume that the noise is small enough so that these equations
should be nearly consistent. There are two approaches that come to mind. The first approach is to
consider these equations as equations for the unknown quantities 122 = /22 and 121 = pi, but without
requiring that ,u2 = pq. This approach has been found to work well most of the time, but it fails
when the linear system for ,u2 and ,u1 is nearly singular. This can happen even when there is nothing
singular about the particular configuration of satellites. For this reason we prefer the approach that
we will now outline.

Since we would like to solve both Eqns. (3.7) and (3.9) simultaneously, this suggests trying to
minimize the quantity

The equation

r ) p 2 cu ) +q2cu).

dr

(3.11)

= 0 (3.12)
d4u

gives us a cubic equation for p . In order for a root of this equation to be a minimum of r(µ) , we
must have

cl2r

cl 2 
> 0.

p. 
(3.13)

Taking the roots of the first derive of r(g) from a numerical root-finding routine, and checking
the sign of the second derivative gives us either one or two minima of (3.11), which we put into
(3.4) to compute TARLS solutions. In the vast majority of cases there is only one minimum, but

18



occasionally situations arise where there are two minima. In such cases we take the TARLS solu-
tion that satisfies the original over-determined system of equations with the smallest total residual
error.
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Chapter 4

The TAQMV Algorithm

The TAFLS equations (2.14) give us four cubic equations (assuming the weighting matrix is
known) involving the four dimensional vector z. Rather than solving this system of equations
exactly, we now give a method that gives the same linearized equations as this full set of equations
when we linearize them about a true, or noiseless, solution. This is similar to the procedure car-
ried out in [14] for the TOA equations. In particular, we will replace the equations (2.14) by the
simplified equations

Definition 2 ( The TAQMV Equations). We define the TOA Altitude Quartic Minimum Variance
equations as

F7/ Wy(z) + 2wx (z)Q2 = 0, (4.1)

where

FR = S - 2e171, (4.2)

I is the solution to the TARLS equations from the previous section, x (z) is defined as in Eqn. (2.8),
y(z) is defined as in Eqn. (2.10), W is computed using T from i in (2.15) and w is computed using
I in (2.16).

The equation (4.1) is quadratic in z, rather than being cubic as in Eqn. (2.14). Eqn. (4.1) differs
from the TAFLS equation in Eqn. (2.14a) in that we use the known quantity 2 in r(z) rather than
using the unknown z. Similarly, we use 2 when evaluating Qz in Eqn. (4.1). We can solve this
equation in a way similar to [14] where the Bancroft algorithm [2] was extended with an additional
term to give a minimum-variance algorithm. To do this we put (2.10) in to (4.1) and solve for z in
the least squares sense. To express z in the form in (4.9) we define the quantities a, 0, and such
that

and

IINVSa = FT?We,

ilvvso = rrjvb,

21
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I1WS4 = (4.5)

If we only have four satellites, we can factor out the term FT?W in Eqns. (4.3) and (4.4).
Otherwise, it is best to obtain a and by doing a QR factorization of the matrix FR. In particular,
to find

FR = Q0110- (4.6)

If we substitute this into Eqns. (4.3) and (4.4) and factor out the term RI; from both sides of these
equations we get the equations

(g,'WSa = (gWe, (4.7)

QI;vvso = (gvvb. (4.8)

When the matrix FR is poorly conditioned, the equations (4.7) and (4.8) will be better conditioned
than (4.3) and (4.4) since we have factored out the poorly conditioned matrix R0 from both sides
(see §5.3 in [5]). Unfortunately, we cannot factor out such a term from (4.5) so we address that
term below.

Assuming we know µ and x, our solution will be

z = itta +0 +x4. (4.9)

In order to determine the values of x and µ we substitute the expression (4.9) into our expressions
(2.3) and (2.8) defining itt and x. This will give us a system of two quadratic equations in x and IL
In particular, the equation (2.3) gives us the equation

where

f(x,P) = A2f2 + A.fl (X) fo (X) = 0,

fk(x)= x2fk2+xfil+fko, for k = 0, 1,2,
(f22,f21,f2o) = (0, 0, alla) ,

(f12,fil,flo) = (0, 2aTL4 ,2a71/3 — 1) ,

(fo2,fol,foo) = (4714,213714,0710 .

22
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(4.12)
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Similarly, substituting the expression in Eqn. (4.9) into Eqn. (2.8) we get

where

ex, !I) bt2g2(x) ittgl +go(x)

gk(x) = gk2x2 + gklx + gko, for k = 0,1,2 ,

(g22,g21,g20) = (0, aTQa),

(g12,gll,gio)= (0, 2aTQ4,2aTQP)

(g02,gol,goo) = (4TQ4,2PTQ4 —1,PTQP —R0

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

Eqns. (4.10) and (4.15) gives us two quadratic equations in the two unknowns µ and x. This
will have four solutions. In the appendix we show how to solve these equations using the theory
of resultants [18, 10]. Once we know At and x, we can use Eqn. (4.9) to determine z.

In practice we slightly modify this algorithm to ensure numerical robustness. Since the vector
4 can be large when the matrix FR is poorly conditioned. Rather than using the vector 4, we use
the vector

4 (4.20)4 
11411

,

and

i=x11411 (4.21)

Rather than solving for x we now solve for jc. The equations for jc are identical to the equations

for x, except we replace 4 by !. and we need to replace Eqn. (4.19) by

go (2) = go222 +god +goo = 22 0g) +2 (2PTQ! 
H411) ()91"Q") •

23
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Chapter 5

Proof of TAQMV Minimum Variance

In this section we show that when we linearize the TAFLS and TAQMV equations about a solu-
tion with no noise, we get the same equations. This shows us that we will get the same statistics
for these two solution techniques for small perturbations, and that the TAQMV algorithm there-
fore achieves the minimum error variance for small data errors. This method of establishing the
minimum variance property was discussed extensively in [14].

We suppose that in the absence of noise there is a solution zo that identically satisfies the
equations (2.10) and (2.8). That is, we have

and

y(zo, do) = 0, (5.1)

x(zo,ho) = 0, (5.2)

where we have included the functional dependence on the data d, the vector of the time data IX,
and h, the altitude, with the subscript naught indicating noiseless quantities. We will introduce the
matrix

ro = So — 2e4,14, (5.3)

where So is (2.5) evaluated with noiseless data. We also introduce the vector

Yo = 7(zo, do) = 0, (5.4)

and the scalar

Xo = X(zo,ho) = 0. (5.5)

We now consider how this solution changes when we perturb the data so that the equations are
no longer consistent. We will let 5F, 5y, 5x, 5W, 514; and 5z represent the first order changes in
F, y, x,W, w and z, when we add noise to our system. The perturbed TAFLS equations (2.14) can
be written as

(Fo+3F)T(Wo+m)(70+ 57) +2(wo+ 3w)(Xo + 5X) (Q0 + 3Q) (ZO + 15Z) = 0. (5.6)

25



However, since yo = 0, and xo = 0, to first order we have

11,'Wo5y+ 2w05xQozo = 0 (5.7)

where we have dropped all terms which are higher order than linear in the variations, since these
terms involve the product of small terms.

We now linearize the TAQMV equations, (4.1), in a similar fashion. Adding noise to the data
gives

(fo + 5f)T(*0 + 51V) (yo + Sy) + 2(1'4'‘ o + 31'1') (Xo + 5X) (Qo + 5Q) (4 + 52) = 0 (5.8)

where 2 is the non-minimum variance, but consistent, estimate of z obtained from the TARLS
algorithm, 20 is the TARLS solution in the absence of noise, which is identical to zo, and 52 is the
error in TARLS solution due to the noise in the data. Since yo = 0, and ;co = 0, Eqn. (5.8) is, to
first order,

fl*c57+21,1,o5XQo20 = O. (5.9)

Comparing Eqns. (5.7) and (5.9) the see that the linearized TAFLS equations, and the linearized
TAQMV equations are identical since 20 = z0, i.e. the TARLS algorithm produces the solution that
satisfies the equations when the equations are consistent. Since the TAFLS solution is minimum
variance, and since the linearized TAQMV and the linearized TAFLS equations are the same, then
the TAQMV solution is minimum variance [14].

For the sake of concreteness we will expand the two variations in Eqns. (5.7) and (5.9) to
show their dependence on the variations in the data and the solution. The quantity 5y has two
contributions. The first arises from changing z keeping the data fixed, and the second comes from
changing the data, and keeping z fixed. We will write this as

ay
5y = Fo5z + —

ad
6d. (5.10)

Here the term 6d comes from changing the data keeping z fixed. Similarly, we can expand 452(
giving

5x = 24:Q05z +4 ddQh zo5h. (5.11)
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Chapter 6

Simulation Results

In this section we give numerical results from simulations that show that the TAQMV algorithm
developed in §4 performs similar to the Gauss-Newton iterative solution initialized to the true
location (noiseless solution). This "gold-standare technique, hereafter denoted "G/N-true", com-
putes the minimum variance (least-squares) solution [14]. Since this computed solution uses the
true location, it is not an algorithm that can be used in an operational system. Therefore we also
compare TAQMV to Gauss-Newton iteration started at the average subpoint of the reporting satel-
lites, hereafter denoted "G-N/sub". This is a practical algorithm, which appears to work as well as
G/N-true or TAQMV when judged with forgiving metrics, such as the median, 95th, or even 99th
percentile error. However using metrics that reflect even infrequent errors, differences in perfor-
mance are seen. In the following we use RMS error, the square root of the mean square Euclidean
(3-D) geolocation error, which heavily penalizes the largest errors. This metric is a very sensitive
discriminator of performance between the TAQMV and G-N/true, but gives meaningless numbers
for G-N/sub which diverges occasionally, in which case the solution error is arbitrarily large. We
say that the error is arbitrarily large in this case since the final error depends on parameters such
as the maximum number of allowed iterations, i.e. the error gets increasing worse with each di-
verging step. In Table 6.1 and Table 6.3 below we tabulate the divergence rate of the TAQMV
and G-N/true, and use an astrisk to indicate the large values produced by the G-N/sub algorithm.
Note that these divergence rates are the (unitless) fraction of the trials that diverged. They could
be interpreted as the probability of divergence.

The TAQMV and two Gauss-Newton variant algorithms were tested with simulated TOAs from
4 satellites plus an assumed HAE. This is a lightly overdetermined situation with just one more
measurement than solution variable. This configuration was used to highlight the vulnerability of
the iterative technique in the lightly overdetermined case. The iterative approach becomes more
robust when the system of equations is more highly overdetermined, and the algebraic algorithm
performs equally well in lightly or heavily overdetermined conditions. Therefore we will not
present performance data for heavily overdetermined cases where all of the algorithms perform
well.

We have found [15, 14] that many algorithms for the solution of systems of space-based geolo-
cation/navigation equations perform markedly better when all the satellite orbital radii are nearly
equal, or conversely, perform better when all at the orbital radii are not nearly equal. Constella-
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tions of the former type are called LER (large equal radius) and constellations of the latter type
are termed non-LER. The TAQMV and the G-N variant algorithms were tested with both types of
constellations. Tables 6.1 and 6.2 give results for an LER constellation, while Tables 6.3 and 6.4
give results for a non-LER constellation.

The LER constellation was a nominal GPS constellation of 24 MEO satellites, whereas in the
non-LER simulations a single GEO satellite was added to each trial data set. In a navigation setting
this could correspond to including a WAAS geosynchronous satellite for example. In the emitter-
location application mixing satellites at different orbits, such as GEO and LEO, is very common.
At each trial, of 100,000 total trials per noise level, we randomly select the desired number of
participating satellites (four) from the satellties in view, while insuring that one GEO is included
in the non-LER simulations. The simulation is described in more detail in an appendix of [14].

At each trial the randomly selected group of four satellites will have a different position dilution
of precision (PDOP), which is a metric relating the input and output error levels. A histogram of
the PDOP values for the LER and the non-LER trials are shown in Figures 6.1 and 6.2. Here
the PDOP is the unitless number obtained by taking the square root of the trace of the position
error covariance matrix and dividing that by the standard deviation of TOA/altitude data errors
(in units of distance). The data errors were all equal and independent when computing the PDOP
histograms, but were not equal in the other simulations where TOA noise varied while the altitude
estimate noise was fixed at an arbitrary value of 10 m. Note that this definition of PDOP is a
slightly generalized version of the TOA-only PDOP, such as described in [12] since our solution
is constrained by an altitude equation as well as the usual TOA equations. In both cases the PDOP
gives the scaling of the input errors to output error through the relation up = PDOP x cr,,, where
sap is the RMS position error and a, is the range and altitude estimate error. Figures 6.1 and 6.2
help illustrate that the simulations tested the algorithms over a wide variety of geometries, as well
as noise levels.

Figure 6.1. PDOP Histogram for the LER Figure 6.2. PDOP Histogram for the non-LER
simulation. simulation.
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Tables 6.1 through 6.4 give results for 5 different noiselevels, expressed in nanoseconds. The
noise levels from 1 to 10,000 nanoseconds represent very small to very large noise levels for most
navigation and most emitter tracking systems. In all runs the 1-sigma noise in the assumed altitude
(ALT) was 10 meters.

Method nanoseconds of TOA Noise
1 10 100 1000 10000

TAQMV 3.83 13.2 88.2 770 7377

G-N/true 3.83 13.2 78.7 767 6747

G-N/sub-pt * * * * *

Table 6.1. Geolocation RMS error, in meters, for the 4-MEO
(LER) 4-TOA/ALT problem. * Occasional divergence gave arbi-
trarily large RMS error for Gauss-Newton initialized with average
satellite sub-point.

Method nanoseconds of TOA Noise
1 10 100 1000 10000

TAQMV 0 0 0 0 0

G-N/true 0 0 0 0 0

G-N/sub-pt 0.00001 0.00072 0.00162 0.00167 0.00185

Table 6.2. Divergence rates for the 4-MEO (LER) 4-TOA/ALT
problem.

Method nanoseconds of TOA Noise
1 10 100 1000 10000

TAQMV 5.24 18.2 142 1120 9559

G-N/true 4.66 17.2 128 1028 8413

G-N/sub-pt * * * * *

Table 6.3. Geolocation RMS error, in meters, for the 3-MEO and
1-GEO (non-LER) 4-TOA/ALT problem. * Occasional divergence
gave arbitrarily large RMS error for Gauss-Newton initialized with

average satellite sub-point.
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Method nanoseconds of TOA Noise
1 10 100 1000 10000

TAQMV 0 0 0 0 0

G-N/true 0 0 0 0 0

G-N/sub-pt 0.00147 0.00171 0.00308 0.00311 0.00343

Table 6.4. Divergence rates for the 3-MEO and 1-GEO (non-
LER) 4-TOA/ALT problem.

The very sensitive RMS data presented in the tables show that the TAQMV algorithm performs
similar to the G-N/true which computes the minimum variance least-squares solution from the
TAFLS equations (2.14). In Table 6.1 we see that for the smallest TOA noise levels the algorithms
agree to 3 decimal digits. In Table 6.3 the small difference (5.24 m versus 4.66 m) results from the
10 largest solution errors. Recomputing the RMS metric from the 99,990 smallest 3-D errors gives
two digits of agreement. The largest geolocation error in the 10 excluded TAQMV errors here was
approximately 500 meters, and for G-N/true was approximately 400 meters. We see that for the
rare case where the geometry is so unfavorable as to give hundreds of meters of geolocation error
from just 1 ns of TOA error, the approximations in the TAQMV equations (4.1), cause the TAQMV
algorithm to perform just noticably worse (e.g. 500 m vs. 400 m). Given the infrequency of sig-
nificant differences, and that these differences occur at times of exceptionally poor geometry, we
conclude the TAQMV algorithm is performing similar to the G/N-true algorithm, which is initial-
ized with the (typically unknown) true location. The G-N/sub algorithm is a realizable algorithm
for an operational system but we see that it has a small but non-zero divergence rate, so would not
be the algorithm of choice for a high-consequence system.
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Chapter 7

Conclusions

In the process of developing our preferred approach to solving the over-determined system of
equations arising from geolocation with TOA data and an altitude constraint on an ellipsoidal
earth, we define three solution methods. The TAFLS equations presented in §2 give solutions
with the minimum mean-square solution error, but require an iterative algorithm for solution, as
no direct method has been devised yet. Note we assume zero-mean data errors, and therefore
zero-mean solution errors, so mean-square solution error i s also called solution error variance. The
TARLS equations presented in §3 do not give the minimum variance solution, but allow us to get a
consistent solution (correct in the absence of noise) by solving a one-dimensional cubic equation.
The third technique, the TAQMV algorithm uses this sub-optimal TARLS solution to define the
optimal weighting matrix which requires the geometry of the problem to be known, and to set the
term z in Eqn. (4.2), and in the expression Qz in Eqn. (4.1) giving a very close approximation
to the TAFLS equations. In §4 we show how to algebraically solve the TAQMV equations using
resultants as described in the Appendix. In §5 we show that the TAQMV equations give the same
solution error variance as the TAFLS equations by linearizing both equations about the zero noise
solution. This comparison with a system known to be minimum variance establishes that the
TAQMV algorithm is minimum variance as well. In §6 we see that the TAQMV functions robustly
over a wide range of simulated geometries and noise levels. The TAQMV therefore reliably gives
the optimal solution that the iterative approach gives when it converges. We demonstrate this
in Section §6 where we compare the TAQMV solution to the iterative solution of the TAFLS
equations using two different initializations. The performance of the TAQMV algorithm is on
par TAFLS iteration with the "omniscienr initialization and better than (never diverges) TAFLS
iteration with average sub-point initialization.
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Chapter 8

Appendix

In this appendix we consider how to solve the simultaneous system of bivariate quadratic equations
given in Eqn. (4.10) and (4.15). To begin, the theory of one dimensional resultants [18, 10] shows
that if we have two polynomials

P(x)= P2X2 + Pa + po = 0,

and

q(x) = q2X2 +qix +qo = 0,

(8.1)

(8.2)

then this system will have a root if and only if the coefficients pk and qk satisfy

det (R) = 0,

where

(8.3)

P2 PI PO 0

R = 0 P2 P1 Po
q2 ql qo 0 •

(8.4)

0 q2 qi qo

In our case, this implies that in order to satisfy the equations (4.10) and (4.15) simultaneously,
we must have

det(R(µ)) = det (µ2F2 + illF1 +Fo) = 0, (8.5)

where R(µ) is the resultant matrix formed by setting p(x) = f(x, ,u) , and q(x) = g( x, ,u) , where
II is considered as a parameter. In particular, we have

/ fk2 fkl fko 0

Fk =
0
gk2

\ 0

fk2
gkl

gk2

fk1
gko
gkl

fko
0
gkO

(8.6)
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where fkj and gkj are the coefficients of xj in fk and gk respectively, which are the coefficients
of !Lk in f and g respectively.

We can turn the quadratic eigenvalue problem (8.5) into a linear eigenvalue problem using a
block companion matrix. To do this we note that the det (R(I)) = 0 implies that a vector 01 exists
such that

(.12F2 + /./F1 +Fo) 01 = O.

This can be written as
— µG) = 0,

where

H=

G=

and

o
—Fo 0

( I 0
Fi F2

(8.7)

(8.8)

It should be noted that Eqn. (8.8) is an eighth order eigenvalue problem, but Bezout's theorem
guarantees us that there are no more than 4 roots to our system of quadratic equations. It turns out
that four of the roots to the eigenvalue problem in Eqn. (8.8) are infinite A careful examination
of this problem shows that the matrix G has a null space of dimension two. One might naively
conclude that this would imply that we should only have two infinite eigenvalues rather than four.
However, a more careful examination of this problem shows that in fact our eigenvalue problem
has one Jordan block of length one and one Jordan block of length three associated with the infinite
eigenvalue.

The fact that we are solving such a degenerate eigenvalue problem can lead to computational
difficulties. Fortunately, these computational difficulties are only important if we are concerned
with the eigenvalues and eigenvectors associated with the infinite eigenvalues. These difficulties
show up by eigensolvers (as in MATLAB) occasionally reporting a finite (though very large) eigen-
value where an infinite eigenvalue should be reported. This has little effect on the accuracy of the
eigenvalues that we are interested in.

Once we have determined pi, for each value of su. we consider the equations f(z,11) = 0,
ex, pi) = O. These can be viewed as two linear equations for x2 = )(2 and xi = x. We solve these
equations to determine xi and hence x.
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